Our approach is one way to formally bridge a gap
between research on emotions in cognitive science,
and the formal approaches to rational agent design
in Al. Well-defined notion of emotional states 1s use-
ful for intelligent systems that are to operate under
time pressure, in multi-agent environments. First,
emotions can serve as control mechanisms that al-
low agents to manage their computational resources
while deliberating about action under time pressure.
Second, well defined notions of emotions serve as
vocabulary that the agents can use to describe their
internal states to each other without referring to im-
plementational details. Finally, these notions are
critical when the agents are to effectively interact
with humans.

The approach we outlined serves as a point of de-
parture for much of the needed future work. The
definitions of emotional transformations can be elab-
orated upon, and more intuitive special cases can be
arrived at. These cases should ultimately find their
way into the taxonomy depicted in Figure 1, and be
defined in terms of measurable attributes [24]. Fur-
ther, the dynamic models of emotional states, like
the one in Figure 2, can become far more elaborate,
thus allowing the agents to predict the emotional
states of other agents and humans in much more de-
tail. Qur current work involves implementation and
experimental validation in simulated air defense en-
vironment in which agents act under time pressure
and interact with other agents and humans. He ex-
pect to show how emotions convey an advantage to
rational agents allowing them to act and interact
effectively.

References
[1] Robert Axelrod. The Evolution of Cooperation. Basic Books, 1984.

[2] Cristina Bicchieri. Rationality and Coordination. Cambridge Uni-
versity Press, 1993.

[3] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-
theoretic planning: Structural assumptions and computational
leverage. Journal of Artificial intelligence Research, 11:1-94, 1999.

[4] David Carmel and Shaul Markovitch. Learning models of intelli-
gent agents. In Proceedings of the National Conference on Artificial
Intelligence, pages 62-67, Portland, OR, August 1996.

[5] P.R. Cohen and H. J. Levesque. Rational interaction as the basis
for communication. In P. R. Cohen, J. Morgan, and M. E. Pollack,
editors, Intentions in Communication. MIT Press, 1990.

[6] G. Cottrell and Metcalfe. Empath: Face, emotion and gender
recognition using holons. In Advances in Neural Information Pro-
cessing. Morgan Kaufman Publishers, 1991.

[7] Tuomas Sandholmand R. H. Crites. Multiagent reinforcement
learning and iterated prisoner’s dilemma. Biosystems Journal,
37:147-166, 1995.

[8] D. Dennett. Intentional systems. In D. Dennett, editor, Brain-
storms. MIT Press, 1986.

(]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Antonio R. Dimasio. Descartes’ Error. Grosset/Putnam, 1994.

Jon Doyle. Rationality and its role in reasoning. Computational
Intelligence, 8:376-409, 1992.

Edmund H. Durfee, Jaeho Lee, and Piotr Gmytrasiewicz. Overea-
ger rationality and mixed strategy equilibria. In Proceedings of the
National Conference on Artificial Intelligence, July 1993.

N. H. Fridja. The Emotions. Cambridge University Press, 1986.

Piotr J. Gmytrasiewicz and Edmund H. Durfee. A rigorous, oper-
ational formalization of recursive modeling. In Proceedings of the
First International Conference on Multiagent Systems, ICMAS’'95,
pages 125-132, July 1995.

B. Hayes-Roth, B. Ball, C. Lisetti, and R. Picard. Panel on affect
and emotion in the user interface. In Proceedings of the 1998 In-
ternational Conference on Intelligent User Interfaces, pages 91-94,
1998.

W. James. What is an Emotion? Mind, 9:188-205, 1884.

W. James. The Physical Basis of Emotion. Psychological Review,
1:516-529, 1894.

P. N. Johnson-Laird and K. Oatley. Basic Emotions, Rationality,
and Folk Theory. Cognition and Emotion, 6(3/4):201-223, 1992.

S. Kraus and K. Sycara. Argumentation in negotiation: A formal
model and implementation. Artificial Intelligence, 104(1-2):1-69,
1989.

Victor Lesser, Michael Atighetchi, Brett Benyo, Raja Bryan Hor-
ling, Vincent Anita, Wagner Regis, Ping Thomas, Shelley Xuan,
and ZQ Zhang. The intelligent home testbed. In Proceedings
of the Autonomy Control Software Workshop (Autonomous Agent
Workshop), 1999.

H. Leventhal and K. Scherer. The relationship of emotion to cog-
nition:a functional approach to semantic controversy. Cognition
and Emotion, 1(1):3 — 28, 1987.

Christine Lisetti. Facial expression recognition using a neural net-
work. In Proceedings of the Florida Artificial Intelligence Research
Symposium, 1998.

Christine Lisetti and Diane J. Schiano. Automaic facial expres-
sion interpretation: Where human interaction, artificial intel-
ligence and cognitive science intersect. Pragmatics and Cogni-
tion, Special Issue on Facial Information Precessing and Multidis-
ciplinary Perpective, 1999.

M. L. Littman. Markov games as a frameowrk for multi-agent
reinforcement learning. In Proceedings of the International Con-

ference on Machine Learning, 1994.

Andrew Ortony, Gerald Clore, and Allen Collins. Cognitive Struc-
ture of Emotions. Cambridge University Press, 1988.

R. Picard. Affective Computing. MIT Press, 1997.

Jeffrey S. Rosenschein and Gilad Zlotkin.
MIT Press, 1994.

Rules of Encounter.

Ariel Rubinstein. Finite antomata play the repeated prisoner’s
dilemma. Journal of Economic Theory, 39:83-96, 1986.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

H. Simon. Motivational and Emotional Controls of Cognition.
Psychological Review, 74:29-39, 1967.

Herbert A. Simon. Rational Choice and the Structure of the Envi-
ronment. MIT Press, 1958.

A. Sloman. Motives, Mechanisms, and Emotions. In M. Boden,
editor, The Philosophy of Artificial Intelligence. Oxford: Oxford
University Press, 1990.

A. Sloman and M. Croucher. Why robots will have emotions. In
Proceedings of the Seventh IJCAI Vancouver, B.C., pages 197-202.
San Mateo, CA: Morgan-Kaufmann, 1981.

K. Sycara. Multiagent systems. Al Magazine, 10(2):79-93, 1998.

Michael Wooldridge and Editors Anand Rao. Foundations of Ra-
tional Agency. Kluwer Academin Publishers, 1999.



an emotional state. Further, let IN be the set of all
environmental inputs.

Definition 2: Emotional transformation is a
function EmotTrans : D x IN* — D.

Thus, given an initial emotional state, D, and
a, possibly empty, history of environmental in-
puts IN, the value of the EmotTrans function 1s
EmotTrans(D,IN) = D', where D' is the agent’s
new emotional state. Examples of such emotional
transformations are depicted in Figure 2. D' may
differ from D in a number of ways. Below we look
at some possibilities that correspond to some of the
more intuitive emotional states.

Transformations of the action space A

Transformation of the action space A, for example
by narrowing the set of alternative actions consid-
ered to encompass only a small subset of all of the
actions, predisposes the agent to take action from
this smaller set. This constitutes the action ten-
dency that the emotion is invoking in the agent, as
postulated, for example, by Fridja in [12]. In the
extreme, narrowing the set A to a single action im-
plements a behavioral condition-response rule.
Formally,
these are transformations EmotTrans(D,IN) = D’
such that D =< P.(S), A, Proj,U >, and D' =<
P.(S),A’, Proj, U >. An emotional transformation
that implements an action tendency in one for which
A’ € A. For example, an agent becoming angry
may result in it considering only a subset of its be-
havioral alternatives, say, ones of aggressive nature.
A special case of this emotional transformation ob-
tains when A’ is a singleton set, containing only one
behavior. This is an implementation of a emotional
condition-action rule; all three emotional states that
correspond to the Tit-for-two-Tats strategy in re-
peated Prisoner’s Dilemma game in Figure 2 are of
this kind since they result in the agent’s being ca-
pable of performing only a single behavior.
Another intuitive special case of such transforma-
tion is one that results in the agent’s deliberating in
a more short-term fashion, such as it being rushed
or panicked under time pressure. Formally we have:
Va; € A’ :t, <tg4, which states that the time hori-
zon of alternative plans considered has diminished.
This 1s characteristic of human decision-makers;
people frequently become more short-sighted when
they are rushed or panicked, since they have no time
to consider long-term effects of their alternative be-
haviors.

Transformations of the utility functions

U

Intuition behind this transformation is that emo-
tions and feelings both implement U, as well as
modify it. Humans evaluate desirability of states
by having positive or negative feelings about them.
Positive or negative emotions or moods may alter
these evaluations by, say, decreasing them, as in
melancholic or depressed moods (when everything
looks bleak), or increasing them, as in elated or
happy moods. Other emotional states can change
the weights of the factors contributing to the utility
ratings (Equation 2).

Formally,
these are transformations EmotTrans(D,IN) = D’
such that D =< P.(S), A, Proj,U >, and D' =<
P.(S), A, Proj, U’ >.

The special case of sadness or melancholy result
in evaluation of the desirability of every state to di-

minish: Vs € S : U'(s) < U(s).

Transformations of the probabilities of
states

The intuition behind this transformation is that
changing these probabilities, for instance by simpli-
fying them, can be helpful and save time under time
pressure. The most radical simplification is one that
makes the most likely state to be the only possi-
ble state or result. This corresponds to considering
only the most likely result of action and neglecting
all less likely states and is often observed in human
decision-makers.

Formally, these are transforma-
tions EmotTrans(D,IN) = D’ such that D =<
P.(S), A, Proj,U >, D' =< P.(S),A, Proj ,U >.
The special case described above obtains is when
the probability distribution Pcl, as well as every pro-
jected distribution PZ»I returned by the projection
function Projl are deterministic.

Conclusions and Future Work

This paper outlined an approach to formally defin-
ing the notions of emotions of rational agents. Fol-
lowing one of the recent approaches to designing ra-
tional agents based on decision theory [28], we at-
tempted to define emotional transformations, and
the resulting emotional states, as resulting from in-
put the agents receive from the environment. The
emotional states are identified as possible modifica-
tions of the decision-making situations the agents
find themselves in.
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Figure 1: An Example Taxonomy of Emotional
States

The taxonomy [24] of emotional states in Fig-
ure 1 is aimed at differentiating among emotional
states by using values of well-defined attributes. It
is clearly desirable to be able to measure the values
of the attributes to be able to determine the cur-
rent emotional state of another agent. Given the
emotional state, its impact on decision-making can
be modeled. Presently, only some of the attributes
differentiating various emotional states are directly
measurable; in human agents for example, the posi-
tive and negative values of valence attribute may be
measurable from facial expression recognition tools.
Further, the taxonomy is incomplete in that we (and
our colleagues in cognitive science) do not yet know
what attributes and their values should be used to
differentiate among some emotional states.

Our framework also uses a dynamic model of
user’s emotional states. Its purpose is twofold: First
it 1s frequently useful not only to assess the current
emotional state the other agent is in but also to pre-
dict what emotional state will obtain, given the cur-
rent emotion on one hand, and a system’s response
or environmental event on the other hand. Second,
since some of the variables that determine the cur-
rent emotional state are not measurable, it may be
possible to infer the current state from the previous
state, if known, and the environmental input. In
Figure 2 we present a very simple example model of
emotions’ dynamics. It contains only three emo-
tional states; COOPERATIVE, SLIGHTLY AN-
NOYED, and ANGRY. The transitions among the
states are caused by environmental inputs or re-

Uncooperative

SLIGHTLY "
ANNOYED
Cooperative
Cooperative

Figure 2: Simple Dynamic Model of an Agent’s
Emotional States

Uncooperative

sponses of the system, and they are divided into
categories of Cooperative and Uncooperative. Using
this dynamic model one can predict that an agent
that is in COOPERATIVE emotional state will be-
come SLIGHTLY ANNOYED given Uncooperative
input. Further, the emotional state of SLIGHTLY
ANNOYED will evolve into ANGRY if another Un-
cooperative response follows.

Dynamic models that use the formalism of finite
state automata like the one in Figure 2 are common
and used in the field of game theory. The simple
example we present here coincides with the Tit-for-
two-Tat strategy used for the Prisoner’s Dilemma
game [1, 4, 27]. The advantage of modeling emo-
tional states of the user with the finite automata
model is that models of this kind can be learned, for
example using an unsupervised US-L learning algo-

rithm [4, 23, 7].

Decision-Theoretic Definitions of
Emotions

We now outline some classes of transformations of
the decision-making situation of an agent. We call
them emotional transformations, and their results
are emotional states. In other words, an emotional
transformation changes one decision-making situa-
tion, say a NEUTRAL emotional state, into an-
other one, say an ANGRY emotional state. We
assume that the emotional transformations them-
selves are triggered by some environmental input,
IN, the agent experiences. We should caution that
our 1dentifying emotions with such transformations
does not account for all of the richness of emotions
in humans; in fact our decision-theoretic approach
limits our formalization to emotions that impact the
agent’s decision making — the emotions that do not
have such impact clearly cannot be accounted for.
Let us denote as D the set of all decision situa-
tions, D), as defined by Definition 1; with the caveat
above, we postulate that each D € D correspond to



they are. Thus P.(S) fully describes the information
the agent has about the present state of the world.

The agent can ponder the consequences of its al-
ternative actions. Due to possible nondeterminism
each action, a@; € A, may lead to many resulting
possible states. The likelihoods of the resulting
states can be specified by another probability dis-
tribution, P;(S)(€ P), also over S. The process
of determining the probabilities of different results,
1.e., the distribution P; has been called a probabilis-
tic temporal projection. The projection is a func-
tion Proj : P(S) x A — P(S5); the result of pro-
jecting the results of action a; given the current in-
formation about the state P.(S) results in the pro-
jected information about the resulting state, P;(.S):
Proj(P.(S),a;) = Pi(S). The above formulation
does not preclude that the state change due to ac-
tions of other agents or exogenous events; here these
effects are implicit and folded into the projection
function [3].

The desirabilities of the states of the world to the
agent are encoded using a utility function U : S —
R, which maps states of the world to real numbers.
Intuitively, the higher the utility value of a state the
more desirable this state is to the agent. The agent
decision problem involves choosing which of the al-
ternative actions in the set A it should execute. One
of the central theorems of decision theory states that
if the agent’s utility function is properly formed, and
the agent expresses its uncertain beliefs using proba-
bilities, then the agent should execute an action, a*,
that maximizes the expected utility of the result.

a* = ArgMaz,,ca ZpﬁU(sj), (1)
SES

where the pf: in the probability the projected distri-
bution P;(S) assigns to a state s/ € S. Frequently,
it 1s convenient to represent the utility function, U,
as depending on a small number of attributes of the
states of the world, as opposed to depending on the
states themselves. This is intuitive; humans may
prefer, say, all of the states in which they have more
money, are more famous, and are healthier. The
attributes, say wealth, fame, and health are then
convenient factors in terms of which the utility func-
tion can be expressed. Multi-attribute utility theory
postulates that, in some simple cases, the utility of
a state is a weighted sum of the utilities, U(X;(s))
of individual attributes:

Us)= )

X eAttributes

Wix, U(Xi(s)), (2)

where the Wy, is the weight, or intuitively, the im-
portance, of the attribute X;. Having the weights
of the attributes explicitly represented is convenient
since 1t enables the tradeoffs among the attributes
the agent may have to make. For example, the agent
may have to give up some of its wealth to improve
its health, and so on.
The elements defined above are sufficient to for-
mally define a decision-making situation of an agent:
Definition 1: A decision-making situation of an
agent is a quadruple: D =< P.(S), A, Proj, U >,
where S, P.(S), A, Proj and U are as defined above.
The above quadruple fully specifies the agent’s
knowledge about the environment, the agent’s as-
sessment as to its possible courses of action, the
possible results of the actions, and desirability of
these results. Our definition here is closely related
to that of stochastic processes, and in particular to
Markov decision process (see [3, 28] and references
therein), but it makes explicit the decision problem
the agent is facing by enumerating the alternative
action sequences the agent is choosing among.
Given its decision-making situation, and agent
can compute its best action, a*, as specified in Equa-
tion 1. It is clear that this computation can be fairly
complex. In a multi-agent environment, for exam-
ple, all of the information the agent has about the
physical environment and about the other agents
could be relevant and impact the expected utili-
ties of alternative courses of action. Sometimes the
agent may have information about the other agents’
state of knowledge, which is also potentially rele-
vant. Given these complexities it is clear that a
mechanism for managing the agent’s computational
resources 1s needed. Here, we suggest that emotional
states, as defined below, may provide for such abil-

ity.

Emotional States: Classification and
Dynamics

As we mentioned, we will view emotions as trans-
formations of the decision-making situation defined
above. First, we briefly describe a taxonomy of emo-
tional states and a finite state machine model of dy-
namics of emotions which can assist agents in mea-
suring and predicting the emotional state of other
agents.



of emotions serve as semantics of emotional terms,
with which the agents can express their own internal
states, understand the states the other agents are in,
and thus predict their actions and interact more ef-
ficiently. Finally, well defined emotional states of
self and others are crucial in the agent’s interaction
with humans. Frequently, human-computer inter-
action is impeded by the machine being hopelessly
out-of-step with the emotional state of the human
user. However, the users’ emotional state, such as
anger, fear, boredom, panic, surprise, joy, or exci-
tation, can be assessed using measurable and in-
ferred factors (facial expression recognition, vocal
intonation, prosody, galvanic skin response, heart
rate and breathing patterns, haptic and tactile feed-
back, body posture [6, 14, 21, 22, 25]), and predicted
from dynamic emotion models based on observed
input events. For example, it should be possible to
predict that an already annoyed human user will not
be calmed down by another system response that 1s
not along the user’s wishes. Thus, it is important
for the machine to model the effect the user’s emo-
tional state has on the user’s decision-making and
his/her tendency for action.

Our approach complements and builds on the ex-
isting approaches to designing rational and socially
competent agents [2, 3, 5, 10, 11, 13, 18, 26, 28,
33, 34]. Such agents should be able to function ef-
ficiently under time and other environmental pres-
sures, and be able to interact and communicate with
other agents. This includes informing each other
about details of the external environment and about
the agents’ own internal states, as well as the abil-
ity to model and predict the internal states of other
agents. Apart from the area of multi-agent systems,
our approach has applications in Human-Computer
Interaction (HCI) that range from intelligent tutor-
ing systems and distance learning support systems
(with recognition of expressions signaling interest,
boredom, confusion), to stress and lie detectors, to
monitors of pilots and drivers’ state of alertness,
to software product support systems (with recogni-
tion of users being dis/pleased with software prod-
ucts), to entertainment and computer games (en-
joyment, confusion), to ubiquitous computing and
smart houses [19].

Decision-Theoretic Preliminaries

The objective of our research is to develop a fun-
damental understanding of the role and usefulness
of the concept of emotional states in designing in-

telligent artificial systems. Our approach draws on
and combines an emerging technology of rational
agent design of Artificial Intelligence on the one
hand [3, 8, 10, 28, 30, 34], with research on human
emotions in cognitive science and psychology on the
other hand [9, 15, 16, 17, 20, 24, 29, 32, 31].

We use decision-theoretic paradigm of rational-
ity, according to which rational agent should behave
so as to maximize the expected utility of its actions
(see [3, 10, 28] and references therein). The expected
utilities of the alternative courses of action are com-
puted based on their possible consequences, the de-
sirability of these consequences to the agent,! and
the probabilities with which these consequences are
thought by the agent to obtain. The main thrust
of our work 1s to examine ways in which compo-
nents of the decision-theoretic model, i.e., the utility
functions, the set of behavioral alternatives, and the
probabilities of consequences, can be transformed in
ways that that has been recognized in cognitive sci-
ence as interactions between emotional states and
decision-making.

A rational agent formulates its decision making
situation in terms of a finite set, A, of the alterna-
tive courses of action, or behaviors, it can execute,
which we will call the agent’s action space. An al-
ternative behavior, say a;, 1s a plan consisting of
consecutive actions extending into the future time
tq,, which we will call the time horizon of this par-
ticular plan. Alternative courses of action in set A
can stand for abstract actions as well as for detailed
elaborations; increasing the level of abstraction fa-
cilitates keeping the size of A down to manageable
proportions. We demand that the actions be dis-
tinct and that the set A be exhaustive, 1.e., that all
of the possible behaviors be accounted for. Some-
times an “all-else” behavioral alternative is used for
compactness, and represents all other possible be-
haviors except the ones explicitly enumerated.

At any point, an agent finds itself in some state
of the world, but due to the fact that the environ-
ment may not be fully observable the agent may be
uncertain about the state. The fact that the actual
state may be unknown to the agent can be formal-
ized by specifying the set of all possible states of
the world, S, together with a family of probabil-
ity distributions, P(S), over these states. One of
these distributions, say P.(S)(€ P), specifies which
of these states are currently possible and how likely

'Such agents are sometimes called self-interested.



Using Decision Theory to Formalize Emotions

Abstract

We use the formalism of decision theory to develop
principled definitions of emotional states of a ra-
tional agent. We postulate that these notions are
useful for rational agent design. First, they can
serve as internal states controlling the allocation of
computations and time devoted to cognitive tasks
under external pressures. Second, they provide a
well defined implementation-independent vocabu-
lary the agents can use to communicate their inter-
nal states to each other. Finally, they are essen-
tial during interactions with human agents in open
multi-agent environments. Using decision theory to
formalize the notions of emotions provides a formal
bridge between the rich bodies of work in cogni-
tive science, and the high-end Al architectures for
designing rational artificial agents.

Introduction

Our research is predicated on the thesis that concept
of emotions can be formalized and be made useful
in designing artificial agents that are to flexibly and
adaptively interact with other agents and humans in
open multi-agent environments. Our formalization
starts from the formal description of a rational agent
based on decision theory, according to which agents
act so as to maximize the expectation of their per-
formance measure. This decision-theoretic model of
decision making can be used to formally define the
emotional states of a rational agent. Our defini-
tions capture how emotional states transform the
agent’s decision-making situation, say, by making
the agent more short-sighted, by altering the agent’s
subjective performance measure (preferences), or by
modifying the probabilities that the agent assigns to

9This research is supported, in part, by the Office of
Naval Research grant N00014-95-1-0775, and by the Na-
tional Science Foundation CAREER award [RI-9702132.

states of the world for the purpose of expected util-
ity calculations.

Having the formal definitions of emotional states
allows us to show how, and why, they are useful.
First, the notions of emotional states are useful as
factors that allow a rational artificial agent to effi-
ciently control the use of its computational resources
[30]. For example, any time pressure that the exter-
nal environment puts the agent under should lead
to 1t being in states that promote faster, possibly
simplified, decision-making. These states, ranging
from, say, “rushed” to “panicked”, should mod-
ify the agent’s decision-making situation to exclude
weakly relevant information, action alternatives that
are likely to be inferior to others, or possibilities that
have vanishing probabilities of being realized. Al-
ternatively, emotional states can serve as ready-to-
use action tendencies that cut down on the agent’s
need for deliberative decision-making. For exam-
ple, if the external environment becomes danger-
ous, the state of “fear” should trigger an action
tendency promoting flight (or an analogous alter-
native depending on the environment).Second, just
as being able to communicate with others about
the external environment is useful during interac-
tions, well defined notions of emotional states are
valuable when an agent finds it necessary to inform
the other agents about its own internal state. In-
stead of having to describe the details of its internal
state, and running the risk of being misunderstood
if the other agents are engineered differently, the
agent can use more abstract and universal terms.
For example, notions of stress or panic are conve-
nient to express the fact that the urgency of the sit-
uation forced the agent to look at only short-term
effects of its actions. Thus, in the context of com-
munication with other agents, the formal definitions



